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Abstract. The goal of the present paper is to deliberate ∗-Ricci-Yamabe soliton, whose potential vector
field is torse-forming on the Kenmotsu manifold. Here, we have shown the nature of the soliton and found
the scalar curvature when the manifold admitting ∗-Ricci-Yamabe soliton on the Kenmotsu manifold.
Next, we have evolved the characterization of the vector field when the manifold satisfies ∗-Ricci-Yamabe
soliton. Also, we have embellished some applications of a vector field as torse-forming in terms of ∗-Ricci-
Yamabe soliton on the Kenmotsu manifold. We have developed an example of ∗-Ricci-Yamabe soliton on
3-dimensional Kenmotsu manifold to prove our findings.

1. Introduction

In 1972, K. Kenmotsu [20] obtained some tensor equations to characterize the manifolds of the third class.
Since then the manifolds of the third class have been called Kenmotsu manifolds. In 1982, R. S. Hamilton
[17] introduced the concept of Ricci flow, which is an evolution equation for metrics on a Riemannian
manifold. The Ricci flow equation is given by:

∂1

∂t
= −2S, (1.1)

on a compact Riemannian manifold M with Riemannian metric 1. A self-similar solution to the Ricci flow
([17], [32]) is called a Ricci soliton [18] if it moves only by a one-parameter family of diffeomorphism and
scaling. The Ricci soliton equation is given by:

£V1 + 2S + 2Λ1 = 0, (1.2)
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Modernism has always been a contested term, and the most energetic debates 
about the reach of the term have recently been associated with an emerging 
interest in global modernism, or planetary modernism. However, horizons of 
multiple modernisms remain fuzzy, and conflicts and compromises between their 
range of practices and ideological networks mostly depend on how they were 
shaped by the history of imperial modernity. In this respect, Indian and British 
modernism of the first half of the twentieth century shared a 
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Abstract. The present research article deals with the study of almost η-Ricci-
Bourguignon soliton and gradient almost η-Ricci-Bourguignon soliton on almost
Kenmotsu manifolds. It is shown that if the metric of a Kenmotsu manifold M2n+1

admits a gradient almost η-Ricci-Bourguignon soliton, then it is η-Einstein. More-
over, if the manifold is complete and ξ leaves the scalar curvature invariant, then it
is locally isometric to Hyperbolic space H2n+1(−1). Next, we demonstrate that if
a (κ, µ) almost Kenmotsu manifold admits an almost η-Ricci-Bourguignon soliton,
then the manifold is η-Einstein. Besides, we explore the condition for non-normal
almost Kenmotsu manifolds satisfying gradient almost η-Ricci-Bourguignon soliton.
In addition, we have also investigated an almost η-Ricci-Bourguignon soliton on
(κ, µ)′-almost Kenmotsu manifold.
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Key words: (κ, µ)-almost Kenmotsu manifold, (κ, µ)′-almost Kenmotsu manifold, almost
η-Ricci-Bourguignon soliton, gradient almost η-Ricci-Bourguignon soliton.

1. Introduction and motivations. The scientists and mathematicians across
many disciplines have always been fascinated to study indefinite structures on
manifolds. When a manifold is endowed with a geometric structure, we have more
opportunities to explore its geometric properties. In 1981, a new geometric flow,
named Ricci-Bourguignon flow, was introduced by Jean-Pierre Bourguignon [7],
which was constructed and based on some unpublished work of Lichnerowicz and
a paper of Aubin [1]. One can define the Ricci-Bourguignon flow as [24]

Definition 1.1. A family of metrics g(t) on an n-dimensional Riemannian mani-
fold (Mn, g) is said to evolve by the Ricci-Bourguignon flow (RB flow for short) if
g(t) satisfies the following evolution equation,

∂g

∂t
= −2(S − ϑrg), (1.1)

where S is the Ricci tensor of the metric, r is the scalar curvature and ϑ ∈ R is a
constant.

From the above definition we can easily say that if ϑ = 0 in (1.1), then it
becomes Ricci flow. Now, from [24], we get different tensor like the Einstein tensor,
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Abstract

Antenna array of two dipole antennas made of copper has been designed and analyzed for 0.1 THz

frequency in this work for element spacing of  and , where λ is the wavelength.

Antenna length is  and width is  Range of azimuth angle is [− 180°–180°] and elevation angle

is [− 90°–90°]. Variation in correlation of power transmitted from first port to second port (S ) has

been analyzed changing tilt variation of second dipole, inter element spacing and frequency.

optimization of results antenna gain has been achieved as 5.41dBi and 6.35dBi for element spacing of

 and  respectively. Favorable values of diversity gain, total active reflection coefficient

and mean effective gain have been achieved in this design as 10 dB, 0.5 dB and − 9.6 dB respectively.

This design gives good results of envelope correlation coefficient as 0.02 and 0.098 for element

spacing of  and  respectively. This antenna is capable of exhibiting isolation of

− 17.6702 dB and − 20.0044 dB for  and  element spacing respectively. Antenna

efficiency is of high value as 96.48% and 97.67% for element spacing of  and 

respectively. A communication system has been studied implementing the proposed design.

Encoding, precoding, orthogonal frequency division multiplexing and beam steering techniques

have been applied to maintain signal quality. A compact array of small size (1.5 × 0.015 mm2), low
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Abstract: In our pursuit of high-power terahertz (THz) wave generation, we propose innovative
edge-terminated single-drift region (SDR) multi-quantum well (MQW) impact avalanche transit time
(IMPATT) structures based on the AlxGa1−xN/GaN/AlxGa1−xN material system, with a fixed alu-
minum mole fraction of x = 0.3. Two distinct MQW diode configurations, namely p+-n junction-based
and Schottky barrier diode structures, were investigated for their THz potential. To enhance reverse
breakdown characteristics, we propose employing mesa etching and nitrogen ion implantation for
edge termination, mitigating issues related to premature and soft breakdown. The THz performance
is comprehensively evaluated through steady-state and high-frequency characterizations using a self-
consistent quantum drift-diffusion (SCQDD) model. Our proposed Al0.3Ga0.7N/GaN/Al0.3Ga0.7N
MQW diodes, as well as GaN-based single-drift region (SDR) and 3C-SiC/Si/3C-SiC MQW-based
double-drift region (DDR) IMPATT diodes, are simulated. The Schottky barrier in the proposed
diodes significantly reduces device series resistance, enhancing peak continuous wave power output
to approximately 300 mW and DC to THz conversion efficiency to nearly 13% at 1.0 THz. Noise
performance analysis reveals that MQW structures within the avalanche zone mitigate noise and
improve overall performance. Benchmarking against state-of-the-art THz sources establishes the
superiority of our proposed THz sources, highlighting their potential for advancing THz technology
and its applications.

Keywords: AlGaN; edge-termination; GaN; IMPATT; multi-quantum well; Schottky barrier; SDR;
terahertz

1. Introduction

The terahertz (THz) frequency range, often referred to as the “terahertz-gap”, has
become a focal point of research and innovation due to its immense potential for a wide
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ABSTRACT A multiple quantum barrier (MQB) avalanche photodiode (APD) structure based on
GaN/AlxGa1-xN material system has been proposed in this paper which is capable of detecting infrared
(IR) signal up to 6.0 µm wavelength. A self-consistent quantum drift-diffusion (SCQDD) model developed
by the authors, has been used to determine the current-voltage characteristics under dark and illuminated
conditions, spectral response, excess noise properties, signal-to-noise ratio, time and frequency responses.
Results show that the proposed MQB APD attains peak responsivity of 60 AW−1 at 3.0 µm wavelength.
Incorporation of a dedicated thin n-type GaN layer for avalanche multiplication in between the p+-GaN
contact layer and MQB constant-field drift-layer ensures significantly low noise equivalent power under
normal operating conditions at room temperature (300 K). Optical pulse response of the device reveals that
special restriction over the charge multiplication able to supress the minor peaks of the current response and
consequently significantly narrow pulse response can be achieved. Narrow pulse response leads to broad
bandwidth of 274.5 GHz, which is significantly broader than the existing IR photo-detectors.

INDEX TERMS Avalanche photodiodes, multiple quantum barrier, self-consistent quantum drift-diffusion
model, infrared, heterojunction, responsivity, pulse response, bandwidth.

I. INTRODUCTION
Avalanche photodiodes (APDs) are most suitable optical
detector for the optical receivers in long-haul optical com-
munication systems [1]. The APDs are preferred as optical
signal detector over other photo-detectors in both free space

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuo Sun.

and fibre-optic communication systems, except the appli-
cations in which the signal-to-noise ratio (SNR)-budget is
low. In those cases, low noise p-i-n detector, in combi-
nation with the trans-impedance amplifier are preferred.
However, high internal gain mechanism of APDs elimi-
nates the burden of trans-impedance amplifiers in case of
the applications where SNR-budget is not a major concern.
Moreover, high sensitivity and ultra-high speed of APD are
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